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Summary

This report provides a non-mathematical introduction to speech input and
output technology. It is divided into three parts. The first presents necessary
background information on speech: on its nature, its production and perception,
and on methods of analysis and coding used in speech I/0. A central message is
that our subjective impression of speech is misleading and causes us to underesti-
mate the complexity of speech communication. The second part is concerned
with speech output and discusses the trade-offs that must be made between the
quality and flexibility of the speech generated and the complexity and storage
requirements of the speech output system. The final - and longest - part of the
report deals with speech recognition. Arguments are presented in favor of statisti-
cal rather than rule-based approaches to speech recognition. The categories of
recognizer currently available and the algorithms they use are briefly described,
with the general conclusion that the performance obtained depends critically on
the training process: on the type and quantity of the training material and on
the amount of information derived from it. Three more detailed sections cover
spectral representations and distance measures, the particular set of representa-
tions classed as auditory models, and techniques for handling noise and distor-
tions. The last section discusses the difficulties of specifying recognizer perfor-
mance, and recommends that all performance measurements should be treated
with circumspection.

Resume

Le rapport constitue une introduction non-mathe'matique a la technologie de
la parole. II se divise en trois parties. La premiere presente de l'information de
base sur la parole: sur sa nature, sa production, sa perception, ainsi que sur les
methodes d'analyse et de codage pertinantes i la reconnaissance automatique et i
la synthdse de la parole. Une des ideaes maRresses de cette partie est que notre
impression de Ia parole ne correspond pas i la re'alite, et qu'elle peut nous mener
i sousestimer la complexite de la communication parlke. La deuxieme partie
porte sur la synthise, et met en evidence les compromis qu'il faut faire entre
d'une part ]a qualite" et la flexibilite de la parole ge'nere;e et d'autre part la
complexiter et les besoins de mermoire du systme utilise. La dernikre - et la plus
longue - des parties du rapport est consacre'e i la reconnaissance de la parole.
Elle se declare en faveur des approches basees sur les me'thodes statistiques plut6t
que sur i'application des re'gles. Une section de cette partie de'crit hrivement les
classes de syst6mes de reconnaissance et les algorithmes qu'ils utilisent, avec la I For
conclusion gerne'rale que la performance d'un systime est largement determine &I
par son procesus d'apprentissage: par le type et la quantite" du materiel 0
d'apprentissage ainsi que var le montant d'information qui en est extrait. Trois Id 0
sections plus spe'cialis~es L:aitent des representations spectrales, des modules audi- to -

tifs, et des techniques pour combattre le bruit et les distortions. La dernikre sec-
tion explique pourquoi il est difficile de specifier la performance d'un systeme de
reconnaissance et conseille qu'il faut traiter toute mesure de performance avec
circonspection. ail t adge
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1. Introduction
This report is intended to provide non-specialist readers with a framework

in which to view speech recognition and synthesis technology. It makes no claim
to be a complete, scholarly account, and the references are simply pointers into
the technical literature: citing a particular publication does not necessarily imply
the precedence or special importance of that work. Algorithms are not described
in detail and mathematics is avoided. Some parts do, however, assume a general
technical background. The presentation tries to keep a balance between obscu-
rity and the misleading oversimplification that is common in popular accounts of
the field. Readers must decide into which trap it has fallen.

The report can be divided into three parts. The first, spanning sections 2 to
5, provides background information on speech necessary for understanding the
rest of the report. The second part, in section 6, discusses options for speech out-
put. The third - and longest part - covers speech recognition. Applications-
related issues (such as error-correction strategies) and approaches to language
modeling are not discussed in detail.

Coherent surveys inevitably, take a particular point of view; but wherever an
issue is clearly contentious, I will try to point out that I am expressing my per-
sonal opinion.

2. The Nature of Speech
Our internal impression of speech is misleading. Our perception of its being

composed of discrete, immutable words, themselves composed of discrete, immut-
able speech sounds - often mistakenly called phonemes - corresponds in no way
to the properties of the acoustic signal. What we perceive is the output of a
sophisticated message reconstruction process ill much as when we see a picture
we immediately reconstruct a three-dimensional scene from it. In reconstructing
the scene we unconsciously use our knowledge of the world, of lighting effects and
of perspective. In the same way, in reconstructing a spoken message we uncons-
ciously use our knowledge of the language - of its grammar and phonetics - of
the situation, of the speaker, and of the world in general. This reconstruction is
so automatic and effective that we are mostly unaware that we are continually
having to supplement the information present in the acoustic signal: we only
realise that the "s," "t" and "th" sounds in lass, laugh and lath are indistinguish-
able on the telephone when we have to spell out an unfamiliar name. The inade-
quacy of the information in the acoustic signal and the need for a wide
knowledge of the world in "making sense" of the acoustic information mean that
automatic speech recognizers that are as skilled as humans at recognizing unres-
tricted speech are a distant prospect.

There are no gaps between spoken words; indeed, there are no consistent
cues to word boundaries. Our impression to the contrary is a result of the mes-
sage reconstruction process coupled with our familiarity with written language,
which itself reflects an internal representation. Words interact at their boun-
daries: bread board is often pronounced as "breab board," and the vowel in two
in the sequence two six is often close to the vowel in French Nu. Short, low-
content words like a or of can be unrecognizable when excised from their context.
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The idea that speech sounds resemble written letters is even more mislead-
ing. Some consonant sounds - "d," "b" and "g," for example - cannot be pro-
nounced in isolation: they must be preceded or followed by another sound, usu-
ally a vowel. Moreover, we cannot take a recording containing one of these
sounds and cut away the surrounding speech until the sound is heard recogniz-
ably in isolation. The cues to the identity of such sounds - and to many others
- are in the continuous transitions into the adjacent sounds. They do not exist
as discrete acoustic entities. Even vowels, which certainly can be produced and
perceived in isolation, can sound quite different when excised from the middle of
a word. More often than not, there is no discernible boundary between one
speech sound and its neighbors.

The impression that words are made up of sequences of discrete, immutable
sounds seems to come from a high level in our processing of speech. At this level
words appear to be coded as sequences of units called phonemes 121 that are capa-
ble of specifying all the distinctions between words that can be made in the par-
ticular language. Whether the phoneme has an objective existence in the brain
has yet to be established, though it seems likely, and in any case it is a natural
and useful abstraction in describing spoken language.

In conjunction with a set of production rules, phonemes provide a
specification of how a given word is to be pronounced. The production rules are
context sensitive: for example, the /t/ phoneme in English results in phoneti-
cally and acoustically different sounds when it begins or ends a word, as in tap
and pat, when it is preceded by an /s/, as in stick or followed by an /r/, as in
tree. We are generally unaware of these differences because they cannot change
the meaning of a word. If some of these differences did correspond to phonemic
distinctions - as they do in many other languages - then they would be much
more noticeable. Nasalization in vowels, for example, is a phonemic cue in
French and is therefore highly noticeable, while in English - where it is at least
as common - it is not a phonemic cue and is therefore largely unnoticed.

Some of the phonetic cues used to signal phonemic distinctions can be
surprising. For example, the words ones and once differ in their final phoneme,
/z/ and /s/ respectively. But in normal speech the main phonetic distinction
between them is in the length on the "n" sound, which is typically twice as long
in ones.

All the information in a written message is contained in its words, and the
words themselves are completely specified by the letters from which they are
composed. A spoken message, on the other hand, contains more information than
simply the sequence of words and the sequences of phonemes from which the
words are composed [3]. Apart from side information concerning the identity
and general emotional state of the speaker, there is much additional information
concerned directly with the meaning and structure of the message. This informa-
tion is encoded in prosodic features: pitch, loudness and timing. Through the
intonation and rhythm of a sentence we can deduce its grammatical structure, as
well as information such as whether the speaker intends to continue speaking.
We can often infer something of the speaker's attitude: a sentence as short as the
word yes can convey scores of different meanings depending on the way it is said.



- 3-

New or important information is also highlighted by prosodic cues: "the new red
car" and "the new red car" mean different things.

Words in English also have inherent prosodic properties in the level of stress
that is assigned to each syllable. Thus, the noun permit and the verb to permit
are pronounced differently even though they are composed of the same phonemes.
Since prosodic cues signal information at many different levels - word identity,
sentence structure, speaker attitude, etc. - they are difficult to analyze, and no
practical speech recognition system makes use of them. Techniques have instead
been developed to allow prosodic information to be ignored in identifying
sequences of words. For most current uses of recognizers - simple commands,
recording strings of digits, and so on - this strategy is adequate, though if we are
ever to approach human levels of performance, it will not be.

Human listeners, on the other hand, cannot ignore prosodic information. It
is therefore essential that speech output devices generate speech with appropriate
prosody. When we are presented with a synthesized sentence in which the words
are pronounced as though they were spoken in isolation, each word is perfectly
clear, but the sense of the sentence is almost impossible to retain.

3. Speech Production

To a good approximation, the acoustic process of speech production can be
modeled as a source driving a linear filter with little interaction between the
source and the filter. The amplitude spectrum of a speech sound is therefore the
product of the source spectrum and the amplitude response of the filter.

In the most important class of speech sounds, namely voiced sounds, which
includes the vowels, and many consonants such as /1/, /m/, /d/, the source is
provided by the vocal cords. The vocal cords open and close at a rate of around
100 Hz in men and closer to 200 Hz in women. This rate, which changes only
slowly, is known as the fundamental frequency or FO, and it correlates strongly
with the perceived pitch of a speech sound. When we sing a tune, it is the funda-
mental frequency that follows the notes.

Most of the acoustic excitation in voiced sounds is concentrated at the
instant of closure of the vocal cords, and a good approximation to voiced excita-
tion after correcting for an overall 12 dB/octave roll-off is provided by an
impulse at the instants of closure. With a steady fundamental frequency, the
spectrum of the excitation is therefore a set of harmonics separated from each
other by the fundamental frequency and decreasing in amplitude by 12
dB/octave. Deviations from the impu'le idealization [41 lead to changes in the
quality of the voice - giving it a tense, breathy or falsetto quality, for example -
but in western languages such changes do not alter the phonetic content of the
sound.

In voiceless sounds (consonants such as /p/, /f/ or the /s/ in sea) the exci-
tation source is provided by a constriction in the vocal tract where turbulent
airflow is generated -- in /f/, for example, the constriction is between the lower
lip and the upper teeth. This excitation has no periodic component, and can be
modeled as white noise.
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The third and least important class of sounds, including /v/ and / z/, have
mixed excitation. That is, the source consists of noise excitation from a constric-
tion as well as periodic excitation from the vocal cords.

The soft palate at the back of the mouth acts as a valve determining
whether air can flow through the nasal cavity and out through the nostrils or
not. In nasal consonants (/m/, /n/ and the "ng" sound in sing) the valve is
open but airflow through the mouth is shut. off. In nasalized sounds, on the other
hand, air flows through both the oral and nasal cavities. We have already noted
that although nasalization is not a cue to phoneme identity in English it is
nevertheless common. The vowel in a word such as man is almost always nasal-
ized,

In non-nasalized sounds the vocal tract is configured as an unbranched tube.
At the frequencies important for speech, sound propagation in this tube is
effectively planar, and reflections in the tube are determined by changes in its
cross sectional area. The filtering effect of the tube can be represented as a
sequence of resonances, i.e. as an all-pole filter, and the frequencies and
bandwidths of these resonances -- known as formants - are determined by the
positions of the tongue, lips and jaw. These parameters, together with the
roughly 6 dB/octave high-frequency lift caused by radiation from the mouth,
completely specify the filtering effect of the vocal tract in oral sounds.

The lowest frequency resonance, known as the first formant or F1, has an
average value of around 500 Hz in men and varies in the range from 300 to 700
Hz. Succeeding formants are spaced on average 1 kflz apart. In women, formant
frequencies are on average 15% higher than in men, since their vocal tracts are
typically 15% shorter. The higher formants generally have larger bandwidths.

In voiceless sounds, there is often too littlelow frequency energy to excite F,
appreciably. The remaining formants have broader bandwidths than in voiced
sounds, resulting in smooth, featureless power spectra.

In nasal and nasalized sounds, the vocal tract becomes a branched tube.
The branching gives rise to antiresonances and thus to a transfer function con-
taining zeroes as well as poles. Such sounds also show additional resonances, and
bandwidths are increased.

4. Aspects of Speech Perception
Human auditory perception [5,61 resembles that of other animals and has

therefore not adapted significantly to deal with speech. It is likely, on the other
hand, that speech has evolved to suit the properties of human auditory percep-
tion. Features of the acoustic signal that are imperceptible obviously cannot be
useful to human listeners. Any information they carry is accidental and is
unlikely to be well controlled. Studying auditory perception should therefore
give us clues to the important cues in speech, and modeling perception will prob-
ably lead to effective representations for automatic speech recognition.

The subjective loudness of a sound is not directly proportional to its acous-
tic power. Energy at low frequencies (below about 200 Hz) and at high frequen-
cies (above about 4 kHz) counts for less than energy at intermediate frequencies.
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Also, equal increments in loudness correspond more closely to equal power incre-
ments measured on a log scale than on a linear scale.

The ear is generally considered to be insensitive to the phase structure of a
sound. In fact, if two spectral components are close enough in frequency (within
about 100 Hz at low frequencies, more at high frequencies) their phase relation-
ship is noticeable. Nevertheless, phase insensitivity over larger frequency
differences means that pairs of waveforms can look quite different and yet sound
indistinguishable. This is why analysis methods usually represent the short-term
power spectrum of the speech signal and ignore its phase spectrum. Phase insen-
sitivity is important for human speech perception because room reverberation
and changes in voice quality affect the phase spectrum and would otherwise cause
speech to sound different.

The frequency resolution of the ear is not uniform across the spectrum;
rather, it decreases at higher frequencies. It is often approximated by a scale that
is linear up to 1 kHz and logarithmic from then on, with the range 0-1 kHz being
considered perceptually equivalent in size to the range 1-4 kHz. Perceptual fre-
quencies are measured on the mel (71 or bark [81 scales.

As one would expect from signal theory, the lower frequency resolution at
high frequencies is coupled with better time resolution. This property suits
speech well, since the sounds that need to be distinguished by fine time resolu-
tion, such as the plosive/fricative pairs /t/ and /s/, have their energy concen-
trated at high frequencies and have little spectral fine structure, while sounds
such as the vowels that need to be distinguished by details of their power spec-
trum have most of their power concentrated at low frequencies.

Loud sounds suppress the ear's response to succeeding sounds at the same
frequency. Thus, a loud tone can mask the presence of a similar weaker tone
presented just after it. This phenomenon is known as temporal masking. The
masking effect decays with time over a period of 100 ms or so. It enhances the
perceptual salience of onsets and of spectral changes, such as formant transitions
between consonants and vowels.

A second kind of masking occurs between components at different frequen-
cies presented at the same time. It is therefore known as simultaneous masking.
The response to a weak tone can be suppressed by the presence of a nearby
strong tone, hence this phenomenon is also called two-tone suppression. The
amount of suppression decreases as the tones move farther apart, and the
decrease is much faster when the masking tone is higher in frequency than the
tone it is masking. Thus, simultaneous masking operates mainly upwards in fre-
quency.

Simultaneous masking is probably responsible for several properties observed
in the perception of speech sounds. The most obvious of these properties is our
ability to ignore low levels of background noise: with wideband noise, intelligibil-
ity is largely unaffected until the signal- to- noise ratio falls below 15 dB.

Many of the masking-related properties concern formants. Experiments
show that we are extremely sensitive to the frequencies of formants but relatively
insensitive to their bandwidths. When pairs of formants come close to each other
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(within about 300 Hz at low frequencies) they fuse and cannot be distinguished
from a single equivalent formant. This fusion occurs over much larger frequency
differences than would be expected from our ability to detect changes in the fre-
quency of a tone, but they are consistent with the range over which two-tone
suppression operates.

Simultaneous masking may also explain why we are largely insensitive to the
details of the fourth and higher formants in voiced sounds. However, the rela-
tively low variability of the higher formants on a perceptual frequency scale may
also help to explain their weak influence on phonetic distinctions.

When listeners are asked to judge the phonetic similarity of two speech
sounds they seem to use different criteria from those they use to judge the overall
similarity of the stimuli simply as sounds [9]. For phonetic judgments listeners
seem able to ignore large differences in spectrum balance (the smooth spectral
shaping that, for example, the tone controls on an audio amplifier affect) [10]. An
ability to ignore spectrum balance differences is useful, because differences in
speaking level affect the spectrum balance as do the reverberant properties of
rooms. Moreover, without this ability communication over the telephone would
be all but impossible.

Finally, there are two properties involving fundamental frequency that are
worth mentioning. The first is our ability to perceive - to hear - the fundamen-
tal frequency of a speech sound even when the fundamental itself has been
filtered out leaving only its higher harmonics. This property is crucial for the
intelligibility of speech over long-distance telephone lines, where the bottom 300
Hz may be missing.

The second such property concerns our perception of the first formant, espe-
cially when the fundamental frequency is high. The frequency resolution of the
ear at low frequencies is fine enough to allow individual harmonics of the funQa-
mental to be detected. Nevertheless, in making phonetic comparisons between
pairs of speech sounds with different fundamental frequencies listeners do not
seem to match the strongest harmonic in the F, region; rather, they seem able to
deduce the frequencies of the formant in the two sounds and base their judgment
on that. There is some question whether listeners ignore the frequencies of the
harmonics completely [II], but it seems clear that to a substantial extent they
do.

In summary, judgments of the phonetic identity of voiced speech sounds
depend heavily on the frequencies of the first two or three formants. These judg-
ments are affected relatively little by the higher formants, by details of formant
bandwidths or amplitudes, by phase properties, or by fundamental frequency.

5. Speech Analysis and Coding Techniques

The properties of speech production and perception described in the last two
sections largely determine the approaches to speech analysis and coding.

Since the parameters of the acoustic source and filter in speech production
vary slowly, it is efficient to separate the source and filter and code their parame-
ters separately. Such parameters need only be estimated fifty or a hundred times
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a second, while if the resulting waveform is encoded, it must be sampled at least
eight thousand times a second. Because of phase insensitivity, only the amplitude
response of the filter need be estimated, while the source can be described by its
amplitude, a voicing decision, %nd the fundamental frequency in voiced speech.
Speech coding systems that separate source from filter are known as vocoders.
For speech recognition purposes, as opposed to speech coding and synthesis, only
the filter characteristics - i.e. the smoothed short-term power spectrum or spec-
trum envelope - are of interest.

The first vocoders were channel vocoders [12], in which the spectrum
envelope is estimated by measuring the energy in a bank of band-pass filters.
The channels are spaced farther apart at higher frequencies to reflect the fre-
quency resolution of the ear. Channel vocoders can be entirely analogue devices,
though today they are usually implemented using digital filters or FFT's.

The second major class of vocoders are linear predictive vocoders, or LPC
(for "linear predictive coding") devices [13]. LPC assumes that the vocal tract
can be modeled as an all-pole filter and that after preemphasis the source in
voiced sounds can be modeled as a sequence of impulses. In so far as these
assumptions hold, and given that the number of resonances in the filter is known,
LPC can in principle determine the filter parameters exactly by analyzing the
autocorrelation properties of the speech waveform within a single excitation
cycle.

We have seen that the all-pole assumption is not valid for all speech sounds.
However, even when it is invalid - in nasal sounds, for example - LPC can still
do a reasonable job of estimating the spectral envelope. In these cases, it simply
fits to the spectrum the closest envelope it can find that would be generated by
an all-pole filter of the given order. Conveniently, the spectrum fitting is not
based on the usual least-squares criterion, but rather on a criterion that concen-
trates on fitting the high-energy regions of the spectrum at the expense of the
weak regions. This criterion follows naturally from the fact that the LPC analysis
does a least-squares fit to the waveform, since the high-energy parts of the spec-
trum affect the waveform most. It reflects to some extent the simultaneous
masking properties of the ear, which also lead to a concentration on the high-
energy parts of the spectrum. On the other hand, LPC does not easily lend itself
to reflecting the varying frequency resolution of the ear in the way that channel
vocoders do.

A more serious weakness of LPC as it is usually implemented comes from its
breaking the requirement that the autocorrelation analysis should be carried out
over an unexcited portion of the waveform. Since it is difficult to determine reli-
ably from the waveform just when the excitations occur, the analysis is instead
carried out over a fixed-length window covering several excitation cycles. More-
over, since the use of the exact covariance method of LPC would in these cir-
cumstances often result in the LPC analysis specifying unstable filters, the
simpler but inexact, atocorrelation method is used. This latter method guaran-
tees filter stability at, the expense of precision in estimating the parameters of the
resonances.
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For speech coding purposes some of the weaknesses of LPC can be alleviated
by encoding additional informatir a specifying a more complex time varying exci-
tation function. Residual excited linear prediction (RELP) [14] and the more
recent and popular multipulse LPC [15] are examples of this class of coding sys-
tems. Such variants have no effect on the quality of the filter specification, and
have consequently little to contribute to speech recognition.

Most of the compromises made by designers of LPC systems are imposed by
the requirement for real-time operation in communications systems. For many
applications of speech analysis - in particular for speech output systems - there
is no need for the analysis to be done in real time. In these circumstances, pitch-
synchronous LPC [16] can be considered. This approach has been studied inten-
sively in our laboratory [17]. Following the theory of LPC, the autocorrelation
properties are computed over a window placed between consecutive excitation
instants in voiced speech. The excitation points are determined using a device
called a laryngograph or electroglottograph [18], which measures the radio fre-
quency impedance across the larynx and hence the area of contact of the vocal
cords. If the laryngograph signal is recorded in parallel with the speech signal, it
can be used to determine the instants of closure of the vocal cords and thus the
instants of excitation of the vocal tract. The use of the laryngograph also pro-
vides a far more reliable measure of voicing and fundamental frequency than is
possible using only the speech signal. Errors in voicing and fundamental fre-
quency are a major source of degradation in speech resynthesized from an LPC
analysis. Also, the exact covariance method of analysis can be used, with the
resulting infrequent instabilities being detected and replaced by equivalent stable
configurations.

Pitch-synchronous LPC is more sensitive than conventional LPC to the qual-
ity of the speech signal. The recordings must be made in extremely quiet, non-
reverberant conditions and digitized with care. For non-real-time applications,
however, the extra effort is well justified by the accuracy the formant analysis
obtained and the high quality of the resulting resynthesized speech. The reliable
formant analysis allows the voice to be manipulated in ways that are impossible
with conventional LPC. Moreover, unlike other techniques for improving the
quality of LPC speech, such as multipulse and RELP, pitch-synchronous LPC
does not increase the amount of data needed to resynthesize the speech, and
resynthesis can be carried out using standard LPC synthesis hardware.

Many techniques have been developed for coding the speech waveform
without separation of source and filter information. These techniques result in
higher data requirements than the vocoder approaches. As they are peripheral to
the rest of the discussion here, they will not be discussed further. Equally, dis-
cussion of speech analysis using auditory models and so-called perceptually based
LPC is deferred until the sections on speech recognition.

Instead of encoding individual samples of a speech waveform, a sequence of
such samples can be encoded by classifying it as a member of a particular group
represented by a reference sequence out of a codebook. The codebook usually
contains several hundred such groups. The information on the sequence to be
transmitted or stored is then simply the index of the reference sequence selected.



- 9-

This process is called vector quantization [191. To work well, the classes
represented by the reference sequences should divide up the space in a way that
reflects both the perceptual discriminability and the probability of occurrence of
waveform shapes. Thus, common sequences should be encoded more accurately
than rare ones by having a higher density of classes in the common regions, while
the perceptual differences between adjacent reference forms should be reasonably
uniform over the space. The technique has been extended to encoding the sets of
channel energies across the filter bank in a channel vocoder and the sets of filter
coefficients specifying one analysis in an LPC vocoder.

6. Techniques for Speech Output
The possibilities for speech output range from text-to-speech systems [201

capable of taking any piece of text in the language and generating a spoken ver-
sion of it to systems that are little more than recording devices echoing back the
fixed spoken phrases that are stored in them. The parameters controlling the
choice of system appropriate for a particular application include the intelligibility
and naturalness of the speech, the complexity of the system, and the range of
vocabulary, sentence structures and voice types that need to be generated. Even
when the vocabulary size is not enormous, text-to-speech systems offer the con-
siderable advantage of allowing the addition of further words to an existing sys-
tem. Adding extra words to a system that uses a particular person's voice, on the
other hand, entails either having continued access to the person or re-recording
the whole vocabulary.

The weak connection between spelling and pronunciation presents an obvi-
ous difficulty for text-to-speech systems in English. However, by use of pronunci-
ation rules together with long lists of exceptions, and in some cases techniques for
dividing up words into sub-units called morphs (un-, re-, -able, -ing and -ly are
morphs), the systems are able to find a correct phonetic transcription for most
words.

Working out the prosodic features of a sentence is much harder. The stress
levels to be assigned to syllables in a word can be found in the same way as its
pronunciation, but as we saw in the first section the timing and intonation and
loudness contours of a sentence depend on its grammatical structure, its meaning
and on the attitude and emotional state of the speaker. Sophisticated systems
can usually analyze the grammatical structure of a sentence, but the other fac-
tors depend on an understanding of the text and ultimately of the world. Perfect
speech synthesis from unrestricted text is about as far away as perfectly accurate
speech recognition of unrestricted material.

Our cultural emphasis on the written form of language has led us to ignore
those aspects of speech that are not directly reflected in text. This has resulted
in speech output being seen as nothing more than a plug-in replacement for a
text display, with a consequent underexploitation of its potential [3]. Every time
someone speaks, much information is transmitted about the sex, geographical ori-
gin, identity, and the emotional and sometimes even the physical state of the
speaker. Yet almost none of this information is used in speech output systems.
One of the best current text-to-speech systems, Declalk, does, it is true, allow for
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some fairly crude voice changes, but I do not believe that the feature is widely
used. Friendly reminders should sound friendly and - at least in some cir-
cumstances - urgent warnings should sound urgent, while different sources of
information should be linked to recognizably different voices.

Waveform-Baeed Speech Output

The simplest speech output systems replay the digitized speech waveform.
As CD players show, these systems can generate speech that is indistinguishable
from the original. The cost in storage requirements, however, can be extremely
high - anything from 64 kbits/s to 700 kbits/s, depending on the quality needed.
By using more sophisticated waveform coding techniques the storage require-
ments can be cut to as low as 12 kbits/s, but there is a gradual trade-off between
bit rate and quality, and the complexity of the hardware is increased.

The biggest disadvantage of waveform coding is that it allows virtually no
flexibility in the output: words and phrases have to be replayed exactly as they
were recorded. Even with messages as simple as lists of digits, there are substan-
tial differences in timing and intonation between final and non-final items. Words
must therefore be recorded in all the contexts in which they are to be used.
Applications with a small number of fixed messages are well suited to this
requirement. To generate spoken telephone numbers in response to requests for
directory assistance, some telephone companies concatenate waveform-encoded
digits recorded in a range of contexts.

Synthesis-by-Rule

At the other pole from waveform coding lies synthesis-by-rule 121]. Words to
be synthesized are first transcribed as sets of phonetic symbols and rules are then
applied to compute trajectories of formant parameters. This is certainly the
most complex approach to speech output. On the other hand, for large vocabu-
laries it has by far the lowest storage requirements. It also possesses the greatest
flexibility, allowing both the prosodic and phonetic features of words to be
altered according to the context and offering the possibility of multiple voices.

The worst synthesis-by-rule systems can be unintelligible unless the content
of the message is known beforehand. Manufacturers of such systems often use
well-known passages such as the Gettysburg address to hide the low intelligibil-
ity. We saw in the first section how inadequate acoustic information is uncons-
ciously supplemented by the listener's knowledge. Casual, subjective impressions
of intelligibility are unreliable.

Even the best synthesis-by-rule systems generate voices that sound distinctly
inhuman. It can be argued that speech output from machines should not sound
human, since it invites listeners to confer expectations of human intelligence on
the machine 1221. However, the inhuman nature of synthesis-by-rule speech prob-
ably reduces its intelligibility. Although such speech scores moderately well when
the intelligibility of isolated words is measured, human response times to such
speech are found to be significantly slower than to natural speech, and
comprehension of passages is lower [231.
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Because of their high cost, low naturalness, and questionable intelligibility,
synthesis-by-rule systems have so far found few applications. They are appropri-
ate in applications such as text readers for the blind, where a large vocabulary is
essential and the highly motivated users will tolerate the unnatural quality, They
are also appropriate for regular professional users who can become familiar with
the voice and a restricted range of messages and eventually cease to notice the
poor quality of the speech. In the long-term, synthesis-by-rule will surely be
improved to the point where it is the system of choice for almost all applications.

Vocoder-based Speech Output

Intermediate between the extremes of waveform coding systems and
synthesis-by-rule lie systems using approaches originally developed for low-bit-
rate digital speech communications systems. Vocoders typically operate at around
2.4 kbits/s, so the storage requirements as well as the complexity and the natur-
alness and intelligibility of the speech is intermediate between the two other
approaches just described. Prosodic features can be manipulated, allowing the
same word to be used in multiple contexts and thus further reducing the effective
storage requirements. Usually, however, phonetic features cannot be easily
modified, so word-boundary interactions cannot be introduced, and voice charac-
teristics cannot be manipulated. The Texas Instruments toy Speak 'n Spell was a
pioneering example of the use -f this kind of speech output in consumer pro-
ducts.

As mentioned in the previous section, the quality of LPC vocoder speech can
be improved at the expense of bit rate and complexity by using techniques such
as RELP and multipulse LPC. Systems of this kind operate at around 9.6
kbits/s. However, for speech output applications they suffer from a serious draw-
back in that the fundamental frequency contour cannot be easily changed. They
are therefore as rigid as waveform coding systems. Compared with waveform
coding, they offer reduced storage requirements at the price of increased complex-
ity.

Pitch-Synchronous LPC

As we saw in the previous section, pitch-synchronous LPC offers a consider-
able improvement in the quality of LPC speech without any increase in storage
requirements or in the complexity of the synthesis system. Moreover, in contrast
to other methods of improving LPC quality, pitch synchrony actually increases
flexibility. The accurate formant analysis means that not only prosodic features
but also phonetic and voice quality features can be manipulated. Apparent sex
and dialect changes are possible, as well as the introduction of emotional attri-
butes such as tense and trembling voices and coarticulation phenomena at word
boundaries.

Diphone and Demisyllable-based Synthesis

Diphones and demisyllables offer an alternative to synthesis-by-rule in con-
structing text-to-speech systems. Diphones attempt to capture the important
transition information between consecutive sounds in units that pass from the
steady portion of one sound to the steady portion of the next (24]. Demisyllable
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units [251 are somewhat longer, allowing for the consonant clusters that can occur
in the first and second halves of syllables. In both cases, the units are generally
encoded using LPC, and by concatenating sequences drawn from an inventory of
around 1000 such units, unrestricted text can be generated. The method has the
flexibility of the LPC system that was used to produce the units, and the units
contain the degradations introduced by the LPC system. The use of pitch-
synchronous LPC therefore seems logical. There is a trade-off between quality
and storage requirements, since a larger number of units allows context and
vowel reduction phenomena to be modeled better. Although diphone synthesis
seems attractive, I am not aware of any practical applications in English of such
systems.

7. Approaches to Automatic Speech Recognition
Someone once said that speech synthesis and speech recognition were com-

plementary problems: synthesis was like squeezing toothpaste out of the tube,
and recognition was like trying to put it back in again. The analogy understates
the difficulty of creating good synthetic speech, but there is some truth in it. In
synthesis, it is sufficient to generate a single acceptable form of a phrase; in
recognition, on the other hand, it is necessary to cope with a range of different
but nevertheless normal versions of any word or phrase. Speech recognition
therefore amounts to looking for invariant features linking different examples of
the same speech and distinguishing them from examples of different speech.

Approaches to speech recognition can be largely divided into two broad
classes. The first attempts to set up a system of rules embodying human
knowledge of what characterizes speech sounds as they appear in spectrograms:
an expert system modeling a skilled spectrogram reader. The second, by con-
trast, uses little human knowledge, but rather attempts to use statistical proper-
ties of training material in systems comparing patterns on continuous scales
rather than applying tests with binary outcomes.

Proponents of the first, knowledge-based, approach sometimes claim it to be
more intelligent and sophisticated than the statistical approach. In my judg-
ment, the statistical approach has, nevertheless, been more successful up to now;
and most recognition products - indeed all recognition products that have been
extensively tested - fall in this camp. A few years ago, the popularity and suc-
cess of expert systems in other domains lead to intense interest in their applica-
tion to speech recognition, but this interest has since diminished considerably.
Currently, there is a major U.S. DoD DARPA program in speech recognition
with two large, competing teams, one at BB&N [26] taking a statistical approach
and the other at CMU [27] taking a knowledge-based approach. Initial results
are showing a strong advantage for the statistical approach, and - perhaps more
remarkably - a single graduate student at CMU is reported to have developed a
statistically based system that is massively outperforming the knowledge-based
system developed by the large professional team [28).

We have seen that our internal impression of speech is misleading, and the
way in which we understand speech is not open to conscious examination.
Attempts to understand speech from spectrograms constitute an attempt to
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decode the speech signal by conscious reasoning. Consciously designed signals -

printed text, Morse code, teleprinter transmissions etc. - typically have easily
identifiable basic units into which the signal can be unambiguously segmented.
Speech does not have such units and does not seem to be the kind of signal that
the conscious mind would design, nor that it would be good at decoding 1291.
Consequently, it is not surprising that the most practiced and adept spectrogramn
readers 1301 are much less effective at decoding speech than the least adept
listeners with normal hearing. Expert systems are intended to model human
conscious reasoning, and attempts to use such an approach to decode speech
information at the phonetic level by modeling the behavior of a phonetician read-
ing spectrograms seem destined to be less successful than attempts to model
unconscious speech perception processes. Statistical methods do not explicitly
attempt to model speech perception processes, but since speech has probably
been shaped to meet the needs of human perception, its statistical properties are
likely to reflect these needs.

This is not to say that expert systems do not have potential for speech
recognition: the approach may be appropriate for the organization of higher level
syntactic and particularly semantic information, which is susceptible to conscious
analysis. The effective use of such higher level information will be necessary if we
are to achieve really sophisticated speech recognition. However, since the interest
here is in what can be done now, the emphasis will be on statistical methods.

8. Categories of Recognition Systems

The simplest recognizers - isolated-word devices - accept words or fixed
phrases surrounded by periods of silence. Generally, an energy criterion is used
to decide where a word starts and stops. The signal between these instants is
then matched against stored word patterns. Except for a few hybrid systems,
isolated-word recognizers require the periods of silence to be longer than any
silent periods that may occur before stop releases within words, namely about
200 ms. Thus, apart from forcing the user to adopt an unnatural style of speech,
isolated-word systems slow down the rate at which speech can be input.

Systems that accept continuous input are called either continuous speech
recognizers or connected-word recognizers. Many writers make a distinction
between the two terms, but the distinctions are not consistent. Most such systems
do not take into account the interactions between words. Thus they effectively
recognize sequences of isolated words spoken in a connected manner. The term
connected-word is used to signal this fact. Alternatively, the term may he used to
distinguish early systems that required the user to pause after a certain length of
input from more recent systems that allow the user to speak without ever paus-
ing and output the sequence of words recognized with some variable delay, typi-
cally a couple of words. The term connected-word will be used here in the first
sense.

Even when the input to a recognizer is to take the form of isolated words, a
connected-word recognizer may be the better choice for the task. C"on nec ted- word
recognizers explain all the input as a sequence of words and various non-word
reference patterns representing silence and perhaps background noises, breath
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noises, lip smacking etc [31]. This makes them better able to cope with extrane-
ous noises than an isolated-word system, whose energy-thresholds may be inap-
propriately triggered.

In addition to isolated and connected-word modes, recognizers may work in
word-spotting mode. In this mode, the stored word patterns may be matched
between any two points in the input without the requirement that they should fit
into some explanation for the complete input. Originally developed for intelli-
gence applications, this mode is often incorporated in connected-word recogniz-
ers, where it can be used to allow the recognizer to scan its input for a key-word
that turns on its normal recognition mode. Such a feature allows a user to break
off to talk to other people without risking spurious responses from the recognizer
or having to push a button to inactivate it.

There are major differences between recognizers in how they are trained.
Statistically based recognizers are trained by being given examples of the words,
or, more rarely, sub-word units, that make up the vocabulary. The simplest
recognizers accept a single example of each word from the speaker who is to use
the device. More sophisticated recognizers require multiple examples, which they
align and average together; while the most sophisticated devices compute not
only the average spectral and timing properties, but also their variances. The
ability to accept large amounts of training material -- and to make good use of it
- is probably the biggest single factor in determining recognizer performance.

Connected-word recognition poses a special problem because words tend to
be pronounced differently when spoken continuously and in isolation. Most
connected-word recognizers simply use an isolated-word training procedure, using
an energy-threshold to determine word end-points. Some devices, however, hav-
ing made initial reference forms from isolated words then go on to a second stage
in which these isolated-word examples are used to pick out examples of the same
word in continuously spoken word sequences. This embedded training seems to be
useful in deriving more representative reference forms for continuously spoken
words.

Speaker-independent systems are systems that are trained by speakers other
than the current user. Generally, many speakers would be used for the training
and there are often several reference forms for each word [32]. Speaker indepen-
dence generally results in a reduction in recognizer performance, and there will
always be some speakers whose speech is too far from the population norm to
allow them to use a particular system. It is a particularly desirable quality for
applications where individuals use the system only briefly and where the vocabu-
lary is large.

Manufacturers have sometimes claimed speaker dependence as a positive
feature because it would prevent unauthorized use. This seems like claiming that
small, cramped cars have the advantage of being unlikely to be stolen by tall
thieves. But it is also based on the misconception that there is a clear distinction
between speaker-dependent and speaker- independent systems. Any speaker-
dependent system can be used by other speakers: there will simply be more
recognition errors. Since many of the variations between speakers also occur to a
lesser extent within the speech of an individual speaker, good speaker-dependent



systems are likely to be more tolerant of other speakers than bad systems are.
Speake r- adaptive systems [33,34,351 are intermediate between the extremes of

speaker dependence and independence in that there is partial retraining to the
current speaker. Such systems are particularly attractive in applications where a
given speaker will not use the system for long enough to justify complete train-
ing, but long enough to allow useful adaptation (which, according to our experi-
ence, may be as short as three words). It seems likely that humans use a form of
speaker adaptation, at least when presented with an unfamiliar dialect, and in
the long-term the most effective recognizers will probably do something similar.

9. Algorithms for Speech Recognition

Statistically based algorithms generally represent the speech to be recognized
as a sequence of frames containing information about the short-term spectrum.
There is typically one frame every 10 or 20 ins. The input frame sequences are
compared against reference models.

Models usually represent whole words, but there are advantages in both
smaller and larger units than the word. Since speech sounds interact in ways that
we are at present poor at characterizing, it is desirable that interactions should
be largely contained within the models rather than occurring between them. The
larger the unit the more interaction is contained within it. On the other hand,
smaller units allow more words to be recognized for a given amount of storage
and computational effort. The smallest unit widely used in experimental systems
is the demisyllable [361, containing the important transition information between
consecutive sounds. The syllable offers an intermediate possibility [371, account-
ing for a substantial proportion of the speech-sound interactions within words.
Beyond the word, units such as word pairs can be considered. Such large units
might find a use in improving recognition performance on small vocabularies
such as the digits. Whole words, however, are not only a good compromise, but
are simplest for training, since it is natural for a user to provide examples of sin-
gle words.

Most model-based recognizers take a Markov modeling approach to recogni-
tion. In dynamic programming time warping algorithms [381 the models consist of
sequences of frames, called templates, and the input sequences are matched
against the set of templates. The matching process allows frames in the model or
in the input or in both to be repeated or to be jumped over. Repeating or jump-
ing over frames corresponds to stretching or compressing time, which is the ori-
gin of the term time warping. Given some method, to be discussed in the next
section, of determining the similarity of pairs of frames, the dynamic program-
ming algorithm can find the alignment of frames between the input and a given
template that has the best total similarity. The template with the best such
total similarity is taken to be the most probable interpretation of the input. In
connected-word recognizers the criterion is extended to the best sequence of tem-
plates that are matched against the input.

The ability to stretch and compress time allows the algorithm to accept
inputs with non-linear timing variations. This property is essential because the
durations of different parts of words vary widely even when the words are spoken
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carefully in isolation, and the variations are much greater in continuous speech,
where durations are affected by the prosody of the phrase or sentence. On the
other hand, durations of speech sounds play an important role in discriminating
between words: we have already seen that ones and once are mainly dis-
tinguished by the duration of the /n/, and, more obviously, the length of the ini-
tial noise burst is largely responsible for distinguishing between tea and sea. To
discourage false matches between word pairs distinguished mainly by durations,
time distortion is often penalized or limited to a certain maximum amount, say
to a 2:1 stretch or compression. Ideally, time warping penalties should reflect the
timing variability of the different parts of words, which is presumably lowest in
regions where duration carries most useful discriminating information. In prac-
tice, dynamic programming systems almost always impose uniform time warping
penalties. Equally, spectral similarity measures are generally treated as uniform
across words, even though some parts of words are more variable in their spectra
than others.

A more recent alternative to dynamic programming time warping is hidden-
Markov modeling [391. This approach assumes that words can be modeled as a
Markov sequence of a small number of hidden states. Each hidden state is proba-
bilistically related to a set of observable states corresponding to the spectral
representation of the speech. In producing an example of a word, a hidden-
Markov model will stay in the first state for a certain time, generating a distribu-
tion of surface states. It then moves to the second state and generates a different
distribution of surface states, and so on until the end of the word model is
reached. The discovery that made hidden-Markov modeling possible was an algo-
rithm that allows the model parameters to be estimated from a set of training
examples of the word. The parameters are the probabilities of staying in a given
hidden state or making the transition to the next state, and the probabilities of
generating a particular surface state given a certain hidden state. From these
probabilities, the probability can be computed that a word to be recognized was
generated by the hidden-Markov model for a word in the reference vocabulary.

When hidden-Markov modeling was first introduced, it was believed to be
radically different from dynamic programming. However, the two types of algo-
rithm are now increasingly seen to be aspects of the same basic approach [40).
Early formulations of hidden-Markov modeling looked radically different from
dynamic programming because of two factors. First, the surface states were
discrete, i.e. vector quantized. It was shown later that the surface states could
be described by continuous distributions, with some increase in computation cost
but with an improvement in performance [41). Second, the log probability that a
given model could have generated a word example was originally computed by
summing over all possible hidden-state interpretations. This Baum- Welch decod-
ing method is theoretically correct and probably gives best performance. It is still
the method used at IBM. However, elsewhere it has been widely replaced by the
computationally simpler Viterbi decoding method, in which the log probability is
summed over only the most likely interpretation. Viterbi decoding corresponds to
the summation in dynamic programming time warping over the most likely
sequence of frame matches.
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A central difference between dynamic programming time warping and
hidden-Markov modeling is that the former assumes a smooth evolution of the
spectrum while the latter makes the less reasonable assumption of abrupt transi-
tions from states with statistically stationary spectra. However, as the number of
states in a hidden-Markov is increased from the usual five or so to value closer to
forty typical of the number of frames in a dynamic progrkmming template, this
difference fades away. What prevents hidden-Markov models from having many
states is the difficulty of estimating the resulting large number of transition pro-
babilities.

Hidden-Markov modeling necessarily computes the variability of spectra at
different parts of each word. It also has variable time distortion penalties, and it
relates these penalties to the spectral distortion penalties in a theoretically defen-
sible way. On the other hand, its timing model is unrealistic in that the probabil-
ity of staying in a given hidden state decays exponentially with time. The
development of more realistic timing models is an active area of research at
present [421.

Hidden-Markov modeling has generally proved itself superior to dynamic
programming time warping both in laboratory systems and in commercial pro-
ducts (notably those from Verbex [43]). The advantage presumably stems from
the inclusion of spectral and timing variability information. On the other hand,
their need for multiple examples of each word makes training hidden-Markov
systems burdensome. Moreover, it is not yet clear that dynamic programming
algorithms with variable spectral and time distortion penalties could not be made
to work at least as well.

In the last few years there has been rapidly increasing interest in the appli-
cation of neural networks to speech recognition, in particular a self-training pat-
tern recognition algorithm called a multi-layer perceptron [441. Such neural net-
works are even freer of imposed ideas of how speech recognition should operate
than the other statistical approaches just discussed. While computationally
expensive during the learning phase on serial computers, they are well suited to
emerging massively parallel architectures. To my knowledge, no-one has yet
described a neural network algorithm for continuous speech recognition, but in
isolated-word tests multi-layer perceptrons are beginning to show performance
levels comparable with the best alternatives.

Neural networks certainly represent an exciting prospect for speech recogni-
tion, but we do need to view them with some caution. In the past, LPC,
hidden-Markov modeling and expert systems h2ve all been adopted with frenzied
enthusiasm as the technique that would revolutionize speech recognition. Claims
are being made for neural network approaches that are just as extreme. There
are, for example, assertions that we do not need to worry about the acoustic
representation presented to the algorithm because it can work out its own
representation from the data it is given. This may not be impossible, but it
would probably be exceedingly inefficient. Even if neural networks do model the
learning behavior of the brain - which is not established we should remember
that the ear is a hard-wired device, and that, in any case, we may not want to
build recognizers that learn language in the same way that babies do. It would be



surprising if neural networks did not make a big contribution to speech recogni-
tion; it would be equally surprising if they turned out to be the whole answer.

10. Spectral Representations and Distance Measures

The choice of the way in which speech spectra are represented is closely tied
to the way in which the spectra are compared. These two operations are central
to the speech recognition process, and they account for most of the computation.

As with vocoders, the first useful spectral representations for speech recogni-
tion used filterbanks. Typically, there are between four and twenty channels in
the range 0-4 kHz or 0-5 kl-z, usually with channel spacing based on a perceptual
frequency scale. The energies in each channel are normally expressed on a log
scale. In this way, changes in the overall level of the input appear as an additive
constant in all the channels, and the spectral profile is preserved. Level changes,
which are more likely to signal irrelevant prosodic differences or changes in dis-
tance from the microphone than useful phonetic distinctions, can then be easily
normalized out.

A common method of measuring the similarity of two spectra is to compute
the Euclidean distance over the log channel energies. The Euclidean distance is
simply the sum of the squares of the differences in the log energies in the
corresponding channels. To avoid multiplications, the Euclidean distance is
sometimes replaced by the city-block distance, in which the absolute differences
in log channel energies rather than their squared differences are summed.

Since spectral envelopes are smooth, representation by channel energies is
inefficient: values in adjacent channels are strongly correlated. A statistical tech-
nique called principle components analysis [45] provides a transformation that
will linearly combine a set of correlated parameters to produce a new, uncorre-
lated set. The new parameters are ordered in terms of the variance of the data
such that a subset of the first n parameters contains the largest proportion of the
total variance that can be concentrated into this number of variables. Thus, prin-
ciple components analysis is an attractive way of describing the variability of
spectra in a reduced number of variables. Because the transform involved is
orthonormal (i.e. it corresponds to a rotation in space), Euclidean distances are
unaffected provided the full dimensionality of the space is retained.

It turns out that the cosine transform is a close approximation to a principle
components analysis of filterbank log energies for speech, and this transform
rather than a true principle components representation is commonly used [46].
Since the cosine transform of a log power spectrum is called a cepstrum, the
cosine transform of the log energies of a mel-scale filterbank is often called a
mel-ce pstrum.

Apart from its useful role in reducing the amount of computation needed in
calculating Euclidean distances, taking the cosine transform and retaining only
the low-order, high-variance terms can actually improve recognition performance.
This is because the low-order terms respond to smooth features in the spectrum,
while the higher-order terms are sensitive to spectral fine structure. Harmonics of
the fundamental appear as fine structure, and are therefore filtered out by the
truncation of the cosine series.
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The major alternative to filterbank front-ends for speech recognizers is LPC.
A method of comparing spectra known as the Itakura metric [47] is computation-
ally attractive because the matrix inversion required for LPC analysis need not
be carried out on the frames speech to be recognized: the autocorrelation proper-
ties of the speech are simply tested for consistency with the LPC coefficients of
the reference data. Increasingly, however, LPC cepstrum coefficients, which can
be easily derived from an LPC analysis, are being used. The relative superiority
of filterbank and LPC front-ends is still disputed, though it is widely believed
that LPC is more sensitive to noise.

Vector quantized representations lead to particularly efficient spectral com-
parisons because the similarity of any pair of items in the codebook can be stored
in a table. Spectral comparison is therefore reduced to table lookup. Vector
quantization is particularly well suited to hidden-Markov modeling as we have
already noted. However, the quantization does seem to reduce recognizer perfor-
mance.

There is currently much interest in replacing the simple unweighted calcula-
tion of the Euclidean distance over the cepstrum by a distance metric in which
the contributions of different cepstrum coefficients are weighted differently. Two
separate arguments exist for applying weights, though interestingly they lead to
similar values for the weights. The first argument is based on properties of the
speech signal and on human speech perception. Formants have a certain range
of bandwidths that corresponds to a range of cepstrum components. Cepstrum
components below this range are sensitive to phonetically unimportant changes in
spectral balance, and components above the range are sensitive to harmonics of
the fundamental frequency. Weighting in favor of mid-range cepstrum
coefficients therefore enhances sensitivity to formants and provides a spectral
similarity measure closer to human judgments of phonetic similarity [48,49].

The second argument for weighting is based on ideas from statistical pattern
recognition. Consider a set of samples described in terms of a number of vari-
ables - in this case a "sample" would be a spectral frame, and the variables
would be channel energies or cepstrum coefficients. If the samples have a mul-
tivariate Gaussian distribution about their mean, and if the variables are
uncorrelated and have equal variances, then the Euclidean distance of a sample
from the mean will be proportional to the log probability of its occurring at this
point. Cepstrum coefficients are indeed uncorrelated, and they do have roughly
Gaussian distributions, but the variances are certainly not the same for different
coefficients. To make the variances look the same, the Euclidean distance contri-
bution of each cepstrum coefficient has to be scaled by its variance [50]. This
statistical approach to distance weighting is attractive because it can be applied
to representations other than filterbanks, for which the principle components do
not look like cosine functions 151].

Both arguments advocate similar steadily increasing weights over roughly
the first eight coefficients. Beyond this point, however, the recommendations
diverge, in that the statistical method says that the weights should continue to
increase, since the variances continue to decrease, while the perceptual argument
and practical experience say they should decrease. At the risk of getting too

I-
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technical here, we believe that the problem in the statistical method is that the
within-class variances rather than the total variances should be used (51,521, and
that uncertainties in estimating the means should be taken into account. We are
actively studying these problems.

We saw in the section on speech analysis and coding that conventional LPC
does not reflect the non-uniform frequency resolution of the ear. However, by
applying LPC to the output of a simulated mel-scale filterbank a perceptually
motivated LPC analysis can be generated. The analysis now no longer
corresponds to a production model consisting of an all-pole filter, and it must
instead be seen entirely as a spectrum-fitting technique. Encouraging recognition
results have been reported, especially when combined with weighted cepstrum
distances measures and when tested with noisy data [11].

11. Auditory Models

Humans are more effective at speech recognition than the best automatic
systems. Their advantage persists even when they are prevented from using their
knowledge of the language by being asked to recognize nonsense words. This sug-
gests that the acoustic representation provided by the ear may be better than
those currently used in recognizers. We have already noted that speech has
probably evolved to suit the representation provided by the ear, so the advantage
is not surprising. Since the superiority of human listeners increases when the
speech signal is degraded by noise or distortions, it seems that the representation
we use must also be particularly robust. These considerations provide the
motivation for using auditory models as front-ends for speech recognizers.

Auditory models present a moving target: as auditory features (such as the
use of a perceptual frequency scale) become common, representations need addi-
tional auditory properties to be called auditory models. Moreover, some develop-
ers of auditory models are aiming to replicate physiological mechanisms 153,54],
while others attempt to reproduce psychoacoustic properties. Our view is that
blind replication of mechanisms is a mistake. The mechanisms employed by the
ear may reflect physiological constraints that are quite different from those
encountered in digital implementations. Piecemeal introduction of physiological
features (such as half-wave rectification in inner hair cells [55]) may degrade per-
formance when introduced into a necessarily incomplete model [56]. The final S
test of an auditory model is its contribution to a speech recognition system; but
since this criterion provides few pointers to the developer, a useful intermediate
criterion is its success in reproducing psychoacoustic properties. Useful
psychoacoustic properties include frequency resolution, phase sensitivity, masking
phenomena, and details of the response to formants.

Since our auditory model 1511 has shown a particularly large recognition per-
formance advantage, it seems worthwhile to describe its structure and properties
briefly. The model has 32 channels equally spaced on a perceptual frequency
scale with centre frequencies ranging from 100 Ilz to 3.3 kliz. Two distinct out-
puts are produced in parallel. The first, called the onset detector, has temporal S
masking properties, and it provides a distinction between voiced and voiceless
speech and silence as well as responding strongly to onsets. The second and more
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important output, called the periodicity detector, responds mainly to formant
structure and has two-tone suppression properties. It is generated by subtracting
the log power output of an inhibitory filter from that of an excitatory filter. The
result is that each channel consists of a central excitatory region extending mid-
way to the centres of the adjacent channels and surrounded by an inhibitory
region. Spectral components in the excitatory region increase the channel out-
put, and components in the inhibitory region reduce it. This process is similar to
what is believed to occur in color perception. By carefully designing the filter
shapes, published two-tone suppression curves can be matched.

The two-tone suppression properties of the periodicity detector result in
some desirable behavior in response to formants. The fourth and fifth formants
are largely masked out in voiced speech. Pairs of formants fuse into a single
peak when they come within a certain frequency difference of each other, just as
they are found to do in perception experiments. The response to the first formant
is largely unaffected by the locations of harmonics of the fundamental frequency,
a property that had been claimed to be impossible to achieve in an acoustic
analysis. Also, the response to phase differences in the model seems close to that
shown by the ear.

Both the onset detector and the periodicity detector have a substantial
degree of independence of changes in overall level or spectrum balance in the
input signal.

A spectrum comparison metric has been developed that combines the two
32-channel outputs into a set of eight numbers. The metric is derived from esti-
mates of the principle components of the within-class covariance matrix. Using
this metric, the performance of the model has been compared with that of a con-
ventional mei-cepstrum representation and unweighted Euclidean distance using
identical data and identical recognition algorithms. In speaker dependent and
independent connected and isolated word tests the model gives reductions in
error rates of between two and three. When the test data is degraded by noise or
changes in spectrum balance, the advantage shown by the model rises to factors
of between six and twenty.

12. Noise and Distortions in Speech Recognition

In all practical applications of speech recognition the speech is subject to
some degree of degradation. In some environments -- aircraft cockpits, produc-
tion lines, and over telephone links, for example -- noise is an obvious problem.
But even in office environments, background noise can interfere with speech
recognition. In addition, room reverberation and distance from the microphone
affect the spectral content of the speech. In most cases, the damage to speech
recognition performance is caused not directly by the degradation but by changes
in the level of the degradation -- changes in noise level, distance from the micro-
phone, and so on.

Noise in the ears of a speaker invariably causes an increase in the loudness
of the speech. Speaking louder not only increases the total energy in the speech
but it also raises the fundamental frequency and changes the spectral balance to
increase the high-frequency content. Some researchers [57] have found this
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indirect effect of noise to have a greater effect on recognition performance than
the direct effect of the noise entering the microphone.

Where appropriate, problems can be alleviated by using a head-mounted
noise-canceling microphone, such as a Shure SM-10. This reduces interfering
noise, room reverberation effects, and variations in the distance from the mouth
to the microphone. If the main source of interfering noise is localized, an addi-
tional microphone and two-channel adaptive filtering can in principle be used to
cancel its effect on the speech, though I know of no instances of this approach
being used. Certainly two-channel filtering does not seem to be useful in aircraft,
where the noise sources are multiple and diffuse [58]. Some positive results have
been reported in aircraft noise using a throat microphone to supplement the
usual microphone mounted in front of the mouth [59]. In many situations, how-
ever, the microphone arrangement cannot be controlled, and in high-noise condi-
tions a significant level of noise remains whatever microphone arrangement is
used.

When the acoustic analysis is a filterbank or simulated filterbank, resistance
to noise can be improved by a so-called noise marking technique provided the
noise is steady [601. The noise level in each channel is estimated during periods
when no speech is present. Then, when frames are being compared, channels in
which the energy is not clearly above the noise level are ignored. It is clearly
crucial that the noise level should not change between the time when it is
estimated and the times when it is used. Moreover, the method cannot be
applied to systems with LPC-based and auditory-model front-ends, in which
noise and speech interact in a non-linear manner. With conventional filterbank
front-ends, its use requires that the channels should be kept separate in the
frame comparison process. This precludes the use of cosine and other transforms
that reduce computation and potentially improve performance. Noise marking
increases the complexity of the frame comparison process. Computational
efficiency here is critical because it is the point where the load is highest, and it
increases with vocabulary size. The computational cost of the front-end, by con-
trast, is independent of vocabulary size.

We have already seen that changes in noise level have effects on the speech
itself. If the noise level is steady over the long term it is therefore useful to have
the speakers be subjected to the noise during the training phase, perhaps by
playing the noise over headphones. If the noise level changes, Microphone
arrangements or noise marking provide no help in counteracting the effects of
changes in the voice.

To my knowledge, only auditory models are robust against both the direct
effects of additive noise and the indirect effects through voice changes. Moreover,
the noise-resistance properties of auditory models are not confined to steady
noises, and the noise level does not need to be estimated. Auditory models are
computationally more costly as front-ends. But this is off-set by the simple frame
comparisons that can be used, and we have seen that it is particularly important
to keep the frame comparison process simple. For these reasons, we believe that
auditory models are the best prospect for achieving reliable speech recognition in
difficult acoustic conditions. A large proportion of all applications of speech
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recognition involve such conditions.

13. Specifying Recognizer Performance

It is natural to want to have a number to specify the performance of a
recognizer, much as the breaking strength of a cable can be specified in units of
force or the speed of a CPU can be specified in MIPS. Unfortunately, there are
many difficulties in trying to define a quantity that can be reproducibly measured
and that will usefully specify performance.

Two parameters that are often used to cite recognizer performance are voca-
bulary size and recognition rate. We will deal with vocabulary size first. Quoted
vocabulary size may simply state the capacity of the reference speech memory
space, and this may be much larger than the recognizer could handle if it is to
provide a usable recognition rate. In recognizers with syntax, it is the average
number of choices, known as the branching factor, rather than the total vocabu-
lary size that is important (or in systems with probabilistic syntaxes, a generali-
zation of the branching factor known as perplexity). In connected-word recogniz-
ers branching factors may be limited not only by the need for adequate recogni-
tion accuracy but also by the speed of the recognizer in attempting to keep up
with the speech being input.

Not all vocabularies of the same size present the same degree of difficulty.
Pairs of words that have many different features and few common features are
easiest to discriminate. A common, particularly difficult vocabulary is the alpha-
bet, in which sets of letters such as b, c, d, el g, p, t and v share a common
vowel. The difficulty is not so much that the words in such sets differ in only one
phoneme, but rather that most of their duration consists of nominally the same
vowel. There will inevitably be random variations in this vowel, and these varia-
tions will occur in the training data as well as in the test data. Thus, the vowel
in a test utterance of c may be closer to that in the reference version of t than to
that in the reference version of c, and this spurious similarity can overwhelm the
true similarity in the initial part of the c's. With the use of more training exam-
ples, the random variations will be averaged out, and in systems using speech-
sound rather than whole-word reference units the problem does not arise. This
means that the difficulty of a vocabulary depends on the details of the recogni-
tion system with which it is used.

Recognition accuracy is sometimes quoted without reference to the vocabu-
lary on which it was obtained. This is clearly absurd. However, even when the
vocabulary is specified, there are serious difficulties with the measurement of per-
formance. Performance measurement is a statistical sampling process that one
hopes would provide similar estimates in repeated independent tests. If the per-
formance level is high - - as it has to be for many applications - errors are rare
and estimation of the error rate requires large amounts of test data.

Generally, performance estimates are sought not for a particular speaker or
set of speakers, but for the whole population. But performance varies greatly
from one speaker to another and even for one speaker from one occasion to
another. Performance estimates would need to be averaged over a large speaker
set to average out speaker differences.
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Recognition performance is often quoted as the percentage of words
correctly recognized. This practice may give the misleading impression that an
improvement from 75% correc -t to 90% correct is more significant than an
improvement from, say, 95% to 99%. The reduction in the total number of
errors is indeed greater in the first case, though the increase in the mean time
between errors (which is proportional to the reciprocal of the error rate) is less,
and time between errors may be what controls a user's subjective impression of
system reliability. From the developer's point of view, the second case represents
much more effort than the first: approaching 100% recognition accuracy is like
approaching absolute zero in low-temperature physics. A more important con-
sideration is the following: if several systems are tested in different conditions -

with different speakers or in quiet and noisy conditions, for example - the rela-
tionship that tends to be preserved between them is the ratio of the error rates.
Thus, if system A makes twice as many errors as system B in one condition, it is
likely to make twice as many errors in another condition. If the two systems
score 98% and 99% in the first condition, and in the second condition system A
scores 80%, then system B's performance is more likely to fall to 90% than to
81%. This rule of thumb suggests that we should always quote error rates rather
than percentages correct. Then in comparing systems, rather than looking at
differences in error rates we should consider their ratios - or, equivalently, the
differences in the log error rates.

The arguments just presented raise a problem when we try to estimate aver-
age recognition results, say across different speakers. Directly averaging error
rates or proportions correct would give disproportionate weight to problem
speakers. Averaging log error rates - amounting to computing the geometric
mean of the error rates - would seem to be a better procedure. However, the
influence of "noise" (i.e. inaccuracies in the estimates) on the log error rates is
much greater for low error rates: a moderate-sized test of an effective system may
result in no errors, though the true error rate can never be zero and the log of
zero is unbounded. Averaging a set of log error rates containing one case with no
errors would always give an apparent average error rate of zero. There may be a
sophisticated statistical technique for handling this problem, but there seems to
be no simple, optimal method of averaging recognition results.

A method of evaluating performance has been proposed [61] that would
potentially make more effective use of a performance test by using measures of
similarity of word patterns derived by a recognizer rather than just using the
one-bit right-or-wrong recognition decision. The method could also potentially
eliminate the vocabulary dependence of performance measurement. Match dis-
tances are recorded between pairs of reference templates and between individual
words to be recognized and their templates. Multidimensional scaling is then used
to determine a placement of the words in a space that is consistent with the dis-
tance data. Templates are imagined to correspond to the points centred on the
spherical distributions of the individual examples. The performance measure, the
equivalent vocabulary capaCity or EVC, is the number of such spheres that can be
packed into the space with a given amount of overlap. The method is in principle
independent of the vocabulary used provided that the vocabulary is diverse
enough to sample the space adequately. Similarly, the difficulty of a specific
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vocabulary, called the required vocabulary capacity or RVC, can be assessed by
computing the EVC that would be necessary to cope with it. These ideas offer a
potentially powerful method of performance evaluation, but they have still to be
fully validated experimentally.

Disturbingly, when two laboratories test the same system with the same
database they do not always obtain the same result. Gain settings may be
different, for example. When the NATO Research Study Group on Speech Pro-
cessing, RSG 10, organized the testing of one commercial recognizer at two sites,
dramatically different results were obtained. It emerged that one of the testing
sites had delegated the task to some enthusiastic but inexperienced staff, who, on
obtaining an error, repeatedly re-input the word at different gain settings until in
was correctly recognized or they were satisfied that it was impossible. In this way
they managed to reduce the error rate to a fraction of that found by the other
group, and if theirs had been the only result reported it would never have been
questioned. Laboratories tend to obtain better results with their own systems
than with others because they know how to set up their own systems for best
performance. A widely reported test from one internationally respected group
found their own algorithm to work much better than an alternative proposed by
another group. The alternative algorithm contained a parameter whose value had
been set far from its optimal value. When a third group repeated the test with
an optimized value, they found a slight advantage for the alternative.

At this point it is worth considering the motivations for performance estima-
tion. An investigator may wish to predict the absolute performance of a recogni-
tion system in a particular application, or he may wish to determine the relative
performance of two or more systems, The former aim is the more difficult to
satisfy: workers at Verbex reported that error rates might increase by an order
magnitude between tests in the laboratory and tests in the field. Performance in
a real task also changes over time as users gain experience.

When the aim is rather to rank the performances of systems, some of the
sources of variation in estimates can be eliminated by using exactly the same
material to test the systems. Standard databases are being developed, and the
U.S. National Bureau of Standards is particularly active in this effort [621. Gil-
lick has recently pointed out 1631 that the sensitivity of comparisons can be
improved further by noting whether systems being compared make errors on the
same words rather than simply comparing overall error rates.

One danger with using standard databases is that systems under develop-
ment will be tested repeatedly, and consciously or unconsciously they will be
adapted to fit the peculiarities of the database. This problem of adaptation to the
test data is common in many areas of pattern recognition.

Overall error rates do not, in any case, tell the whole story about perfor-
mance. First, it is important that recognizers should reject words not in the voca-
bulary: users often inadvertently present such words to recognizers. Te -t data-
bases free of spurious items do not test this ability; and even if they did, the fre-
quency and type of these items would have to be fixed arbitrarily. Recognizers
often have adjustable rejection thresholds that allow probability of accepting
spurious inputs to be traded off against probability of rejecting valid inputs.
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In addition, overall error rates say nothing about the way in which errors
are distributed across the vocabulary. To take an extreme example, 91% recog-
nition accuracy in a digit recognition task might mean 91% accuracy on each
digit or 100% accuracy on the digits 0 to 8 and a random 10% on the digit 9.
The latter case offers more potential for improvement by changing the vocabu-
lary or modifying the algorithm. However, if neither the vocabulary nor the algo-
rithm can be changed, the even distribution of errors is preferable. To see this,
consider the task of having the recognizer correctly recognize each of the digits
once: the even distribution case would on average require eleven digits to be
input, while the uneven case would on average require nineteen (ten repetitions
of the digit 9).

Connected-word recognizers present particular difficulties for performance
evaluation because of the possibility of insertions and deletions as well as substi-
tution errors. If, for example, the digit string "990" is presented and the system
responds with "9950," it is not clear whether a 5 is inserted before the 0 or the
second 9 was misrecognized as a 5 and an additional 9 is inserted.

One can regard any word sequence containing an error as entirely wrong;
but this is an inefficient use of the data and it says nothing about the kinds of
errors being made. Another strict analysis compares the input and output in
order: in the example above, the 5 in the output would be compared with the 0
in the input and the 0 in the output would be taken to be an insertion. This
analysis is pessimistic and insensitive to true error rates unless insertions and
deletions are known to be rare.

A popular evaluation strategy uses dynamic programming to match a
sequence of symbols representing the words found by the recognizer to a sequence
representing the words actually presented to the recognizer. Given penalty costs
for insertions, deletions and substitutions, the method finds the lowest-cost -
hence the most favorable - interpretation of the recognizer output in terms of
the input. This will generally underestimate the number of errors made by the
recognizer, but simulations have shown that for error rates below about 20% it is
reasonably accurate 1641.

Finally, if the word boundaries found by the recognizer can be determined,
and if the true word boundaries in the test data are known,' a method using
dynamic programming to compare boundary locations can give accurate perfor-
mance estimates over the full performance range 164]. Since the symbol-matching
approach works well at practical performance levels, the main return for the
additional effort required by the boundary-matching approach is in the diagnostic
information it provides. Such information is of more interest to algorithm
developers than to applications-oriented workers.

14. Concluding Remarks

We can all speak, and we can all understand speech. Since most of the pro-
cessing involved in both of these actions is automatic and unconscious, it is hard
to realise what remarkable skills they are. We are led to underestimate the
difficulties of conferring similar skills on machines; and those who want to sell
speech I/O products often reinforce the misimpression by understating the
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difficulties and exaggerating the performance of their product. The message of
much of this report has therefore been rather negative: not only are speech input
and output difficult tasks, it is also difficult even to measure the performance of a
speech input or output system. In case the balance has tilted too far the other
way, we should hasten to remember that useful things can be done with technol-
ogy available today, and progress - though slower than some accounts would
claim - is being made.

Communication between humans is overwhelmingly by voice. Yet communi-
cation with machines is at present even more overwhelmingly by touch and sight.
Speech input and output is generally more natural and often faster than using
keyboards and screens. It also leaves hands and eyes free for other tasks, and
allows remote access with equipment no more complex than a wireless micro-
phone or a telephone handset. Given these advantages, it seems certain that as
speech technology progresses it will play an increasingly important role in our
interaction with machines.

Readers wanting a more comprehensive introduction to speech technology
might try the book by Parsons 1651.
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